Versuche andere Versionen dieser Fragen
Ein lineares Gleichungssystem wurde umgeschrieben als erweiterte Matrix, wobei
die Unbekannte `y` in Spalte 1,
die Unbekannte `m` in Spalte 2
und die Unbekannte `s` in Spalte 3 geschrieben wurde.
Nach Durchführung des Gaußschen Algorithmus ergab sich die Matrix:
`[(1,0,0,1),(0,1,0,3),(0,0,1,0)]`
Wie lauten die Lösungen des LGS?
`m` =
`y` =
`s` =
die Unbekannte `y` in Spalte 1,
die Unbekannte `m` in Spalte 2
und die Unbekannte `s` in Spalte 3 geschrieben wurde.
Nach Durchführung des Gaußschen Algorithmus ergab sich die Matrix:
`[(1,0,0,1),(0,1,0,3),(0,0,1,0)]`
Wie lauten die Lösungen des LGS?
`m` =
`y` =
`s` =
Löse die Matrixgleichung `A X = B` nach `X` auf.
`A = [(1,-2,2),(0,1,0),(1,-5,3)], \ \ B = [(4),(-1),(9)]`
`X` =
`A = [(1,-2,2),(0,1,0),(1,-5,3)], \ \ B = [(4),(-1),(9)]`
`X` =
Antwort 1: Geben Sie jedes Element der Matrix als Zahl (z.B. 5, -2, 2.2) ein