Diskrete Zufallsvariablen

Ein Merkmal X, das aufgrund zufälliger Ereignisse eine (endliche) Menge von Ausprägungen x 1 , x 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaaqaaaaaaaaaWdbiaaigdaa8aabeaakiaacYcacaWG4bWaaSba aSqaa8qacaaIYaaapaqabaGccaGGSaWdbiabgAci8caa@3D20@ annehmen kann, nennt man diskrete Zufallsvariable X.

Wahrscheinlichkeitsfunktion

f ( x ) = { P ( x = x i ) = p i , x = x i { x 1 , x 2 , , x k , } 0  sonst MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0Zaaiqa aeaafaqaaeGabaaabaGaamiuamaabmaabaGaamiEaiabg2da9iaadI hapaWaaSbaaSqaa8qacaWGPbaapaqabaaak8qacaGLOaGaayzkaaGa eyypa0JaamiCa8aadaWgaaWcbaWdbiaadMgaa8aabeaakiaacYcaca WG4bGaeyypa0JaamiEamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiab gIGiopaacmaabaGaamiEa8aadaWgaaWcbaWdbiaaigdaa8aabeaaki aacYcacaWG4bWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaaiilaiab gAci8kaacYcacaWG4bWdamaaBaaaleaapeGaam4AaaWdaeqaaOGaai ila8qacqGHMacVaiaawUhacaGL9baaaeaacaaIWaGaaeiiaiaaboha caqGVbGaaeOBaiaabohacaqG0baaaaGaay5Eaaaaaa@6112@

Normiertheit

i = 1 k p i = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaaca WGWbWaaSbaaSqaaabaaaaaaaaapeGaamyAaaWdaeqaaOGaeyypa0Ja aGymaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGRbaaniabggHiLd aaaa@3FE0@

Verteilungsfunktion:

F ( x ) = P ( X x ) = i : x x i f ( x i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadcfadaqadaqaaiaa dIfaqaaaaaaaaaWdbiabgsMiJkaadIhaa8aacaGLOaGaayzkaaGaey ypa0ZaaabuaeaacaWGMbWaaeWaaeaacaWG4bWaaSbaaSqaa8qacaWG PbaapaqabaaakiaawIcacaGLPaaaaSqaaiaadMgacaGG6aGaamiEa8 qacqGHKjYOcaWG4bWdamaaBaaameaapeGaamyAaaWdaeqaaaWcbeqd cqGHris5aaaa@4F05@

Erwartungswert

E ( X ) = μ = i = 1 k x i p i = i = 1 k x i f ( x i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaabm aabaGaamiwaaGaayjkaiaawMcaaiabg2da9abaaaaaaaaapeGaeqiV d0Maeyypa0ZaaabCaeaacaWG4bWdamaaBaaaleaapeGaamyAaaWdae qaaOWdbiabgwSixlaadchapaWaaSbaaSqaa8qacaWGPbaapaqabaGc cqGH9aqpdaaeWbqaaiaadIhadaWgaaWcbaWdbiaadMgaa8aabeaak8 qacqGHflY1caWGMbWaaeWaaeaacaWG4bWdamaaBaaaleaapeGaamyA aaWdaeqaaaGcpeGaayjkaiaawMcaaaWcpaqaaiaadMgacqGH9aqpca aIXaaabaGaam4AaaqdcqGHris5aaWcpeqaaiaadMgacqGH9aqpcaaI XaaabaGaam4AaaqdcqGHris5aaaa@5A4C@

Varianz

V a r ( X ) = i = 1 k ( x i E ( X ) ) 2 f ( x i ) = E ( ( X E ( X ) ) 2 ) = E ( X 2 ) ( E ( X ) ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaadg gacaWGYbWaaeWaaeaacaWGybaacaGLOaGaayzkaaGaeyypa0ZaaabC aeaadaqadaqaaiaadIhadaWgaaWcbaaeaaaaaaaaa8qacaWGPbaapa qabaGccqGHsislcaWGfbWaaeWaaeaacaWGybaacaGLOaGaayzkaaaa caGLOaGaayzkaaWaaWbaaSqabeaapeGaaGOmaaaakiabgwSixlaadA gadaqadaqaaiaadIhapaWaaSbaaSqaa8qacaWGPbaapaqabaaak8qa caGLOaGaayzkaaaal8aabaGaamyAaiabg2da9iaaigdaaeaacaWGRb aaniabggHiLdGccqGH9aqpcaWGfbWaaeWaaeaadaqadaqaaiaadIfa cqGHsislcaWGfbWaaeWaaeaacaWGybaacaGLOaGaayzkaaaacaGLOa GaayzkaaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaiaawIcacaGLPaaa cqGH9aqpcaWGfbWaaeWaaeaacaWGybWaaWbaaSqabeaapeGaaGOmaa aaaOWdaiaawIcacaGLPaaacqGHsisldaqadaqaaiaadweadaqadaqa aiaadIfaaiaawIcacaGLPaaaaiaawIcacaGLPaaadaahaaWcbeqaa8 qacaaIYaaaaaaa@68FF@

Varianz der Summe unabhängiger Zufallsvariablen

V a r ( X + Y ) = V a r ( X ) + V a r ( Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaadg gacaWGYbWaaeWaaeaacaWGybGaey4kaSIaamywaaGaayjkaiaawMca aiabg2da9iaadAfacaWGHbGaamOCamaabmaabaGaamiwaaGaayjkai aawMcaaiabgUcaRiaadAfacaWGHbGaamOCamaabmaabaGaamywaaGa ayjkaiaawMcaaaaa@48F9@

Standardabweichung

σ = V a r ( X ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHdpWCcqGH9aqpdaGcaaqaaiaadAfacaWGHbGaamOCamaabmaa baGaamiwaaGaayjkaiaawMcaaaWcbeaaaaa@3E18@

Diskrete Zufallsvariablen

Eingabe bestätigen:


Erwartungswert

Varianz

Standardabweichung

Diskrete Zufallsvariablen

Eingabe bestätigen:


Erwartungswert

Varianz

Standardabweichung