Ist A⊆Ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGbbGaeyOHI0SaeuyQdCfaaa@3A6C@ , so gilt wegen der Additivität P( A )=P( ∪ ω∈A { ω } )= ∑ ω∈A P( { ω } )= ∑ ω∈A p( ω ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGqbWaaeWaaeaacaWGbbaacaGLOaGaayzkaaGaeyypa0Jaamiu amaabmaabaWaambuaeaadaGadaqaaiabeM8a3bGaay5Eaiaaw2haaa WcbaGaeqyYdCNaeyicI4Saamyqaaqab0GaeSOkIufaaOGaayjkaiaa wMcaaiabg2da9maaqafabaGaamiuamaabmaabaWaaiWaaeaacqaHjp WDaiaawUhacaGL9baaaiaawIcacaGLPaaacqGH9aqpdaaeqbqaaiaa dchadaqadaqaaiabeM8a3bGaayjkaiaawMcaaiaab6caaSqaaiabeM 8a3jabgIGiolaadgeaaeqaniabggHiLdaaleaacqaHjpWDcqGHiiIZ caWGbbaabeqdcqGHris5aaaa@6049@
Also kann man ausgehend von einer Funktion p:Ω→ ℝ + 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGWbGaaiOoaiabfM6axjabgkziUkabl2riHoaaDaaaleaacqGH RaWkaeaacaaIWaaaaaaa@3E7E@ ein Wahrscheinlichkeitsmaß P definieren, falls nur p( ω )≥0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGWbWaaeWaaeaacqaHjpWDaiaawIcacaGLPaaacqGHLjYScaaI Waaaaa@3CE2@ für alle ω∈Ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHjpWDcqGHiiIZcqqHPoWvaaa@3AF6@ sowie ∑ ω∈Ω p( ω )=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaaeqaqaaiaadchadaqadaqaaiabeM8a3bGaayjkaiaawMcaaiab g2da9iaaigdaaSqaaiabeM8a3jabgIGiolabfM6axbqab0GaeyyeIu oaaaa@42E5@ gilt.
Man sagt, dass die Dichte p das Wahrscheinlichkeitsmaß P induziert.