Sei ( Ω,P ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaqa aaaaaaaaWdbiabfM6axjaacYcacaWGqbaapaGaayjkaiaawMcaaaaa @3AC2@ der Wahrscheinlichkeitsraum für den Wurf zweier unterscheidbarer Würfel, d.h. Ω={ 1,…,6 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHPoWvcqGH9aqpdaGadaqaaiaaigdacaGGSaGaeyOjGWRaaiil aiaaiAdaaiaawUhacaGL9baaaaa@3F45@ und P die Gleichverteilung. Sei X( i,j )=max{ i,j } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGybWaaeWaaeaacaWGPbGaaiilaiaadQgaaiaawIcacaGLPaaa cqGH9aqpciGGTbGaaiyyaiaacIhadaGadaqaaiaadMgacaGGSaGaam OAaaGaay5Eaiaaw2haaaaa@43A2@ die Zufallsvariable, die die maximale Augenzahl der beiden Würfe angibt. Dann ist X( Ω )={ 1,…,6 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGybWaaeWaaeaacqqHPoWvaiaawIcacaGLPaaacqGH9aqpdaGa daqaaiaaigdacaGGSaGaeyOjGWRaaiilaiaaiAdaaiaawUhacaGL9b aaaaa@41AB@ und es gilt P( { 1 } )=p( 1 ) = ∑ ( i,j )∈Ω: max( i,j )=1 p( i,j )=p( 1,1 ) = 1 36 , P( { 2 } )=p( 2 ) = ∑ ( i,j )∈Ω: max( i,j )=2 p( i,j )=p( 1,2 )+p( 2,1 )+p( 2,2 ) = 3 36 , P( { k } )=p( k ) = 2k−1 36 (warum?). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmWaaa qaaiaadcfadaqadaqaamaacmaabaGaaGymaaGaay5Eaiaaw2haaaGa ayjkaiaawMcaaiabg2da9iaadchadaqadaqaaiaaigdaaiaawIcaca GLPaaaaeaacqGH9aqpdaaeqbqaaiaadchadaqadaqaaiaadMgacaGG SaGaamOAaaGaayjkaiaawMcaaiabg2da9iaadchadaqadaqaaiaaig dacaGGSaGaaGymaaGaayjkaiaawMcaaaWceaqabeaadaqadaqaaiaa dMgacaGGSaGaamOAaaGaayjkaiaawMcaaabaaaaaaaaapeGaeyicI4 SaeuyQdCLaaiOoaaqaaiGac2gacaGGHbGaaiiEamaabmaabaGaamyA aiaacYcacaWGQbaacaGLOaGaayzkaaGaeyypa0JaaGymaaaapaqab0 GaeyyeIuoaaOqaaiabg2da9maalaaabaGaaGymaaqaaiaaiodacaaI 2aaaaiaabYcaaeaacaWGqbWaaeWaaeaadaGadaqaaiaaikdaaiaawU hacaGL9baaaiaawIcacaGLPaaacqGH9aqpcaWGWbWaaeWaaeaacaaI YaaacaGLOaGaayzkaaaabaGaeyypa0ZaaabuaeaacaWGWbWaaeWaae aacaWGPbGaaiilaiaadQgaaiaawIcacaGLPaaacqGH9aqpcaWGWbWa aeWaaeaacaaIXaGaaiilaiaaikdaaiaawIcacaGLPaaacqGHRaWkca WGWbWaaeWaaeaacaaIYaGaaiilaiaaigdaaiaawIcacaGLPaaacqGH RaWkcaWGWbWaaeWaaeaacaaIYaGaaiilaiaaikdaaiaawIcacaGLPa aaaSabaeqabaWaaeWaaeaacaWGPbGaaiilaiaadQgaaiaawIcacaGL PaaapeGaeyicI4SaeuyQdCLaaiOoaaqaaiGac2gacaGGHbGaaiiEam aabmaabaGaamyAaiaacYcacaWGQbaacaGLOaGaayzkaaGaeyypa0Ja aGOmaaaapaqab0GaeyyeIuoaaOqaaiabg2da9maalaaabaGaaG4maa qaaiaaiodacaaI2aaaaiaabYcaaeaacaWGqbWaaeWaaeaadaGadaqa aiaadUgaaiaawUhacaGL9baaaiaawIcacaGLPaaacqGH9aqpcaWGWb WaaeWaaeaacaWGRbaacaGLOaGaayzkaaaabaaabaGaeyypa0ZaaSaa aeaacaaIYaGaam4AaiabgkHiTiaaigdaaeaacaaIZaGaaGOnaaaaca qGGaGaaeikaiaabEhacaqGHbGaaeOCaiaabwhacaqGTbGaae4paiaa bMcacaqGUaaaaaaa@B17D@