Definition: Verteilung einer Zufallsvariablen

Sei ( Ω,( Ω ),P ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaqa aaaaaaaaWdbiabfM6axjaacYcacqGHyeYWdaqadaqaaiabfM6axbGa ayjkaiaawMcaaiaacYcacaWGqbaapaGaayjkaiaawMcaaaaa@4011@ endlicher Wahrscheinlichkeitsraum mit Wahrscheinlichkeitsmaß P. Sei X:Ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiaacQ daqaaaaaaaaaWdbiabfM6axjabgkziUkabl2riHcaa@3C9D@ eine Zufallsvariable. Dann definiert P X ( B )= bB P( { X=b } ) := ωΩ:X( ω )B p( ω ) mit BX( Ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGqbWdamaaCaaaleqabaWdbiaadIfaaaGcpaWaaeWaaeaacaWG cbaacaGLOaGaayzkaaGaeyypa0ZaaabuaeaacaWGqbWaaeWaaeaada GadaqaaiaadIfacqGH9aqpcaWGIbaacaGL7bGaayzFaaaacaGLOaGa ayzkaaaaleaacaWGIbWdbiabgIGiolaadkeaa8aabeqdcqGHris5aO Gaeyypa0ZaaabuaeaacaWGWbWaaeWaaeaapeGaeqyYdChapaGaayjk aiaawMcaaiaabccacaqGTbGaaeyAaiaabshacaqGGaGaamOqa8qacq GHgksZcaWGybWaaeWaaeaacqqHPoWvaiaawIcacaGLPaaaaSWdaeaa peGaeqyYdCNaeyicI4SaeuyQdCLaaiOoaiaadIfadaqadaqaaiabeM 8a3bGaayjkaiaawMcaaiabgIGiolaadkeaa8aabeqdcqGHris5aaaa @671B@ ein Wahrscheinlichkeitsmaß auf X( Ω ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGybWaaeWaaeaacqqHPoWvaiaawIcacaGLPaaaaaa@3A0B@ , die Verteilung (distribution) der Zufallsvariablen.

Für die Dichte der Verteilung gilt p X ( x )= ωΩ:X( ω )=x p( ω )= ω X 1 ( x ) p( ω ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGWbWdamaaCaaaleqabaWdbiaadIfaaaGcpaWaaeWaaeaacaWG 4baacaGLOaGaayzkaaGaeyypa0ZaaabuaeaacaWGWbWaaeWaaeaape GaeqyYdChapaGaayjkaiaawMcaaiabg2da9maaqafabaGaamiCamaa bmaabaWdbiabeM8a3bWdaiaawIcacaGLPaaacaqGUaaaleaapeGaeq yYdCNaeyicI4SaamiwamaaCaaameqabaGaeyOeI0IaaGymaaaalmaa bmaabaGaamiEaaGaayjkaiaawMcaaaWdaeqaniabggHiLdaaleaape GaeqyYdCNaeyicI4SaeuyQdCLaaiOoaiaadIfadaqadaqaaiabeM8a 3bGaayjkaiaawMcaaiabg2da9iaadIhaa8aabeqdcqGHris5aaaa@5F50@

Hierbei bezeichnet X 1 ( x )={ ωΩ:X( ω )=x }Ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCa aaleqabaGaeyOeI0IaaGymaaaakmaabmaabaGaamiEaaGaayjkaiaa wMcaaiabg2da9maacmaabaaeaaaaaaaaa8qacqaHjpWDcqGHiiIZcq qHPoWvcaGG6aGaamiwamaabmaabaGaeqyYdChacaGLOaGaayzkaaGa eyypa0JaamiEaaWdaiaawUhacaGL9baacqGHgksZpeGaeuyQdCfaaa@4E11@ das Urbild von x unter der Zufallsvariablen (Funktion) X.

Oftmals schreiben wir P bzw. p statt P X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGqbWdamaaCaaaleqabaWdbiaadIfaaaaaaa@3815@ bzw. p X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaaeaaaaaaaaa8qacaWGybaaaaaa@3816@ , wenn klar ist, um welche Zufallsvariable X und welches zugrunde liegendes Wahrscheinlichkeitsmaß P es sich handelt.