Kolmogorow-Smirnow-Anpassungstest
Test auf Übereinstimmung zweier Wahrscheinlichkeitsverteilungen.
Man betrachtet ein statistisches Merkmal X, dessen Verteilung in der Grundgesamtheit unbekannt ist.
- (Die Zufallsvariable X besitzt die Wahrscheinlichkeitsverteilung F0.)
- (Die Zufallsvariable X besitzt eine andere Wahrscheinlichkeitsverteilung als F0.)
Der Kolmogorow-Smirnow-Test vergleicht die empirische Verteilungsfunktion mit mittels der Teststatistik
- (sup: Supremum)
Die Teststatistik ist unabhängig von der hypothetischen Verteilung F0.
Ist der Wert der Teststatistik größer als der entsprechende tabellierte kritische Wert, so wird die Nullhypothese verworfen.