0
0/10
11
Periodische Funktionen
0/10/2
11.2
Anwendungen in der Schwingungslehre
0/10/2/4
11.2.4
Überlagerung gleichfrequenter Schwingungen (Superposition)
0/10/2/4/9
.
Beispiel 11 - 65
y
1
=
4
c
m
⋅
sin
(
2
s
-
1
⋅
t
)
y
2
=
3
c
m
⋅
cos
(
2
s
-
1
⋅
t
-
π
6
)
.
y
1
=
4
c
m
⋅
sin
(
2
s
-
1
⋅
t
)
y
2
=
3
c
m
⋅
cos
(
2
s
-
1
⋅
t
-
π
6
)
=
3
c
m
⋅
sin
(
2
s
-
1
⋅
t
+
π
3
)
φ
1
-
φ
2
=
π
3
A
=
4
2
c
m
2
+
3
2
c
m
2
+
2
⋅
4
⋅
3
c
m
2
⋅
cos
π
3
=
6
,
0
8
c
m
tan
φ
=
4
c
m
⋅
0
+
3
c
m
⋅
sin
π
3
4
c
m
⋅
cos
0
+
3
c
m
⋅
cos
π
3
=
2
,
5
9
c
m
5
,
5
c
m
=
0
,
4
7
⇒
φ
≈
2
5
,
3
∘
≈
0
,
4
4
.