0
0/12
0/12/1
0/12/1/2
für n ∈ ℕ gilt: . ddx(xn) = lim x → 0Δy Δx = lim x→0(x + Δx)n - xn Δx . . (a + b)n = an + n 1 an-1b + n 2 an-2b2 + … + bn . . Δy Δx = f(x0 + Δx) - f(x) Δx = (x + Δx)n - xn Δx . .
Δy Δx = + n 1 xn-1(Δx) + n 2 xn-2(Δx)2 + … + (Δx)n - Δx . . = n 1 xn-1 + n 2 xn-2(Δx) + … + (Δx)n-1 . . d dx(xn) = lim x→0 n 1 xn-1 + n 2 xn-2(Δx) + … + (Δx)n-1 . . d dx(xn) = n 1 ⋅ xn-1 = n ⋅ xn-1