0
0/13
0/13/2
0/13/2/4
∫xn dx=xn+1n+1+C (gilt fürn≠-1)
|
∫1x dx=ln|x|+C
|
∫ex dx=ex+C
|
∫ax dx=ax⋅1lna+C
|
∫sinx dx=−cosx+C
|
∫cosx dx=sinx+C
|
∫1cos2x dx=tanx+C
|
∫1sin2x dx=−cotx+C
|
∫1√1−x2 dx={arcsinx+C1−arccosx+C2
|
∫11+x2 dx={arctanx+C1−arccot x+C2
|
∫sinhx dx=coshx+C
|
∫coshx dx=sinhx+C
|
∫1cosh2x dx=tanhx+C
|
∫1sinh2x dx=−cothx+C
|
∫1√x2+1 dx=arsinh x+C=ln|x+√x2+1|+C
|
|
∫1√x2−1 dx=arcosh x+C=ln|x+√x2−1|+C (für |x|>1 )
|
|
∫11−x2 dx={artanh x+C1=12⋅ln(1+x1−x)+C1 für|x|<1arcoth x+C2=12⋅ln(1+xx−1)+C2 für|x|>1
|