0

0/13

14 Einführung in die Integralrechnung

0/13/2

14.2 Integration

0/13/2/4

14.2.5 Grundintegrale
x n  dx= x n+1 n+1 +C        (gilt für n - 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kIipcbiGaa8hEa8aadaahaaWcbeqaa8qacaWFUbaaaOGaaeiO aiaabsgacaWF4bGaa8xpamaalaaapaqaa8qacaWF4bWdamaaCaaale qabaWdbiaa=5gacqGHRaWkcaaIXaaaaaGcpaqaa8qacaWFUbGaey4k aSIaaGymaaaacqGHRaWkcaWFdbaaaa@4637@
1 x  dx=ln| x |+C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kIi=aaSaaa8aabaWdbiaaigdaa8aabaacbiWdbiaa=HhaaaGa aeiOaiaabsgacaWF4bGaa8xpaiGacYgacaGGUbWaaqWaa8aabaWdbi aa=HhaaiaawEa7caGLiWoacqGHRaWkcaWFdbaaaa@4564@
e x  dx= e x +C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kIipcbiGaa8xza8aadaahaaWcbeqaa8qacaWF4baaaOGaaeiO aiaabsgacaWF4bGaa8xpaiaa=vgapaWaaWbaaSqabeaapeGaa8hEaa aak8aacqGHRaWkcaWGdbaaaa@41C1@
a x  dx= a x 1 lna +C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kIipcbiGaa8xya8aadaahaaWcbeqaa8qacaWF4baaaOGaaeiO aiaabsgacaWF4bGaeyypa0Jaa8xya8aadaahaaWcbeqaa8qacaWF4b aaaOGaeyyXIC9aaSaaa8aabaWdbiaaigdaa8aabaWdbiGacYgacaGG UbGaa8xyaaaacqGHRaWkcaWFdbaaaa@4807@
sinx dx=cosx+C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kIiVaci4CaiaacMgacaGGUbacbiGaa8hEaiaabckacaqGKbGa a8hEaiaa=1dacqGHsislciGGJbGaai4BaiaacohacaWF4bGaey4kaS Iaa83qaaaa@45CE@
cosx dx=sinx+C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kIiVaci4yaiaac+gacaGGZbacbiGaa8hEaiaabckacaqGKbGa a8hEaiaa=1daciGGZbGaaiyAaiaac6gacaWF4bGaey4kaSIaa83qaa aa@44E1@
1 cos 2 x  dx=tanx+C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kIi=aaSaaa8aabaWdbiaaigdaa8aabaWdbiGacogacaGGVbGa ai4Ca8aadaahaaWcbeqaa8qacaaIYaaaaGqacOGaa8hEaaaacaqGGc Gaaeizaiaa=HhacaWF9aGaciiDaiaacggacaGGUbGaa8hEaiabgUca Riaa=neaaaa@46F5@
1 sin 2 x  dx=cotx+C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kIi=aaSaaa8aabaWdbiaaigdaa8aabaWdbiGacohacaGGPbGa aiOBa8aadaahaaWcbeqaa8qacaaIYaaaaGqacOGaa8hEaaaacaqGGc Gaaeizaiaa=HhacaWF9aGaeyOeI0Iaci4yaiaac+gacaGG0bGaa8hE aiabgUcaRiaa=neaaaa@47EA@
1 1 x 2  dx={ arcsinx+ C 1 arccosx+ C 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kIi=aaSaaa8aabaWdbiaaigdaa8aabaWdbmaakaaapaqaa8qa caaIXaGaeyOeI0ccbiGaa8hEa8aadaahaaWcbeqaa8qacaaIYaaaaa qabaaaaOGaaeiOaiaabsgacaWF4bGaa8xpamaaceaapaqaauaabeqa ceaaaeaapeGaciyyaiaackhacaGGJbGaai4CaiaacMgacaGGUbGaa8 hEaiabgUcaRiaa=neapaWaaSbaaSqaa8qacaaIXaaapaqabaaakeaa peGaeyOeI0IaciyyaiaackhacaGGJbGaai4yaiaac+gacaGGZbGaa8 hEaiabgUcaRiaa=neapaWaaSbaaSqaa8qacaaIYaaapaqabaaaaaGc peGaay5Eaaaaaa@5588@
1 1+ x 2  dx={ arctanx+ C 1 arccot x+ C 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kIi=aaSaaa8aabaWdbiaaigdaa8aabaWdbiaaigdacqGHRaWk ieGacaWF4bWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaaeiOaiaabs gacaWF4bGaa8xpamaaceaapaqaauaabeqaceaaaeaapeGaciyyaiaa ckhacaGGJbGaaiiDaiaacggacaGGUbGaa8hEaiabgUcaRiaa=neapa WaaSbaaSqaa8qacaaIXaaapaqabaaakeaapeGaeyOeI0Iaaeyyaiaa bkhacaqGJbGaae4yaiaab+gacaqG0bGaaeiiaiaa=HhacqGHRaWkca WFdbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaaaaOWdbiaawUhaaaaa @55E3@
sinhx dx=coshx+C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kIiVaci4CaiaacMgacaGGUbGaaiiAaGqaciaa=HhacaqGGcGa aeizaiaa=HhacaWF9aGaci4yaiaac+gacaGGZbGaaiiAaiaa=Hhacq GHRaWkcaWFdbaaaa@46B9@
coshx dx=sinhx+C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kIiVaci4yaiaac+gacaGGZbGaaiiAaGqaciaa=HhacaqGGcGa aeizaiaa=HhacaWF9aGaci4CaiaacMgacaGGUbGaaiiAaiaa=Hhacq GHRaWkcaWFdbaaaa@46B9@
1 cosh 2 x  dx=tanhx+C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kIi=aaSaaa8aabaWdbiaaigdaa8aabaWdbiGacogacaGGVbGa ai4CaiaacIgapaWaaWbaaSqabeaapeGaaGOmaaaaieGakiaa=Hhaaa GaaeiOaiaabsgacaWF4bGaa8xpaiGacshacaGGHbGaaiOBaiaacIga caWF4bGaey4kaSIaa83qaaaa@48CD@
1 sinh 2 x  dx=cothx+C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kIi=aaSaaa8aabaWdbiaaigdaa8aabaWdbiGacohacaGGPbGa aiOBaiaacIgapaWaaWbaaSqabeaapeGaaGOmaaaaieGakiaa=Hhaaa GaaeiOaiaabsgacaWF4bGaa8xpaiabgkHiTiGacogacaGGVbGaaiiD aiaacIgacaWF4bGaey4kaSIaa83qaaaa@49C2@
1 x 2 +1  dx=arsinhx+C=ln| x+ x 2 +1 |+C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kIi=aaSaaa8aabaWdbiaaigdaa8aabaWdbmaakaaapaqaaGqa c8qacaWF4bWdamaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaaIXa aaleqaaaaakiaabckacaqGKbGaa8hEaiabg2da9iaa=fgacaWFYbGa a83Caiaa=LgacaWFUbGaa8hAa8aacaaMd8+dbiaa=HhacqGHRaWkca WFdbGaeyypa0JaciiBaiaac6gadaabdaWdaeaapeGaa8hEaiabgUca Rmaakaaapaqaa8qacaWF4bWdamaaCaaaleqabaWdbiaaikdaaaGccq GHRaWkcaaIXaaaleqaaaGccaGLhWUaayjcSdGaey4kaSIaa83qaaaa @5848@


1 x 2 1  dx=arcoshx+C=ln| x+ x 2 1 |+C (für |x|>1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kIi=aaSaaa8aabaWdbiaaigdaa8aabaWdbmaakaaapaqaaGqa c8qacaWF4bWdamaaCaaaleqabaWdbiaaikdaaaGccqGHsislcaaIXa aaleqaaaaakiaabckacaqGKbGaa8hEaiabg2da9iaa=fgacaWFYbGa a83yaiaa=9gacaWFZbGaa8hAa8aacaaMd8+dbiaa=HhacqGHRaWkca WFdbGaeyypa0JaciiBaiaac6gadaabdaWdaeaapeGaa8hEaiabgUca Rmaakaaapaqaa8qacaWF4bWdamaaCaaaleqabaWdbiaaikdaaaGccq GHsislcaaIXaaaleqaaaGccaGLhWUaayjcSdGaey4kaSIaa83qaiaa bccacaqGOaGaaeOzaiaabYpacaqGYbGaaeiiaiaacYhacaWG4bGaai iFaiabg6da+iaaigdacaqGGaGaaeykaaaa@63B6@

1 1 x 2  dx={ artanhx+ C 1 = 1 2 ln( 1+x 1x )+ C 1     für| x |<1 arcothx+ C 2 = 1 2 ln( 1+x x1 )+ C 2    für| x |>1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kIi=aaSaaa8aabaWdbiaaigdaa8aabaWdbiaaigdacqGHsisl ieGacaWF4bWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaaeiOaiaabs gacaWF4bGaeyypa0Zaaiqaaeaapaqbaeqabiqaaaqaa8qacaWFHbGa a8NCaiaa=rhacaWFHbGaa8NBaiaa=HgapaGaaG5aV=qacaWF4bGaey 4kaSIaa83qa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqp daWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaacqGHflY1ciGGSb GaaiOBamaabmaapaqaa8qadaWcaaWdaeaapeGaaGymaiabgUcaRiaa =Hhaa8aabaWdbiaaigdacqGHsislcaWF4baaaaGaayjkaiaawMcaai abgUcaRiaa=neapaWaaSbaaSqaa8qacaaIXaaapaqabaGccaqGGaGa aeiiaiaabccacaqGGaWdbiaabAgacaqG8dGaaeOCamaaemaapaqaa8 qacaWF4baacaGLhWUaayjcSdGaeyipaWJaaGymaaWdaeaapeGaa8xy aiaa=jhacaWFJbGaa83Baiaa=rhacaWFObWdaiaayoW7peGaa8hEai abgUcaRiaa=neapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyyp a0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaeyyXICTaci iBaiaac6gadaqadaWdaeaapeWaaSaaa8aabaWdbiaaigdacqGHRaWk caWF4baapaqaa8qacaWF4bGaeyOeI0IaaGymaaaaaiaawIcacaGLPa aacqGHRaWkcaWFdbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOGaaeii aiaabccacaqGGaWdbiaabAgacaqG8dGaaeOCamaaemaapaqaa8qaca WF4baacaGLhWUaayjcSdGaeyOpa4JaaGymaaaaaiaawUhaaaaa@9121@



Teilen