|
∫
1
x
dx=ln|
x
|+C
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape
Gaey4kIi=aaSaaa8aabaWdbiaaigdaa8aabaacbiWdbiaa=HhaaaGa
aeiOaiaabsgacaWF4bGaa8xpaiGacYgacaGGUbWaaqWaa8aabaWdbi
aa=HhaaiaawEa7caGLiWoacqGHRaWkcaWFdbaaaa@4564@
|
∫
e
x
dx=
e
x
+C
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape
Gaey4kIipcbiGaa8xza8aadaahaaWcbeqaa8qacaWF4baaaOGaaeiO
aiaabsgacaWF4bGaa8xpaiaa=vgapaWaaWbaaSqabeaapeGaa8hEaa
aak8aacqGHRaWkcaWGdbaaaa@41C1@
|
∫
a
x
dx=
a
x
⋅
1
lna
+C
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape
Gaey4kIipcbiGaa8xya8aadaahaaWcbeqaa8qacaWF4baaaOGaaeiO
aiaabsgacaWF4bGaeyypa0Jaa8xya8aadaahaaWcbeqaa8qacaWF4b
aaaOGaeyyXIC9aaSaaa8aabaWdbiaaigdaa8aabaWdbiGacYgacaGG
UbGaa8xyaaaacqGHRaWkcaWFdbaaaa@4807@
|
∫sinx dx=−cosx+C
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape
Gaey4kIiVaci4CaiaacMgacaGGUbacbiGaa8hEaiaabckacaqGKbGa
a8hEaiaa=1dacqGHsislciGGJbGaai4BaiaacohacaWF4bGaey4kaS
Iaa83qaaaa@45CE@
|
∫cosx dx=sinx+C
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape
Gaey4kIiVaci4yaiaac+gacaGGZbacbiGaa8hEaiaabckacaqGKbGa
a8hEaiaa=1daciGGZbGaaiyAaiaac6gacaWF4bGaey4kaSIaa83qaa
aa@44E1@
|
∫
1
cos
2
x
dx=tanx+C
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape
Gaey4kIi=aaSaaa8aabaWdbiaaigdaa8aabaWdbiGacogacaGGVbGa
ai4Ca8aadaahaaWcbeqaa8qacaaIYaaaaGqacOGaa8hEaaaacaqGGc
Gaaeizaiaa=HhacaWF9aGaciiDaiaacggacaGGUbGaa8hEaiabgUca
Riaa=neaaaa@46F5@
|
∫
1
sin
2
x
dx=−cotx+C
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape
Gaey4kIi=aaSaaa8aabaWdbiaaigdaa8aabaWdbiGacohacaGGPbGa
aiOBa8aadaahaaWcbeqaa8qacaaIYaaaaGqacOGaa8hEaaaacaqGGc
Gaaeizaiaa=HhacaWF9aGaeyOeI0Iaci4yaiaac+gacaGG0bGaa8hE
aiabgUcaRiaa=neaaaa@47EA@
|
∫
1
1−
x
2
dx={
arcsinx+
C
1
−arccosx+
C
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape
Gaey4kIi=aaSaaa8aabaWdbiaaigdaa8aabaWdbmaakaaapaqaa8qa
caaIXaGaeyOeI0ccbiGaa8hEa8aadaahaaWcbeqaa8qacaaIYaaaaa
qabaaaaOGaaeiOaiaabsgacaWF4bGaa8xpamaaceaapaqaauaabeqa
ceaaaeaapeGaciyyaiaackhacaGGJbGaai4CaiaacMgacaGGUbGaa8
hEaiabgUcaRiaa=neapaWaaSbaaSqaa8qacaaIXaaapaqabaaakeaa
peGaeyOeI0IaciyyaiaackhacaGGJbGaai4yaiaac+gacaGGZbGaa8
hEaiabgUcaRiaa=neapaWaaSbaaSqaa8qacaaIYaaapaqabaaaaaGc
peGaay5Eaaaaaa@5588@
|
∫
1
1+
x
2
dx={
arctanx+
C
1
−arccot x+
C
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape
Gaey4kIi=aaSaaa8aabaWdbiaaigdaa8aabaWdbiaaigdacqGHRaWk
ieGacaWF4bWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaaeiOaiaabs
gacaWF4bGaa8xpamaaceaapaqaauaabeqaceaaaeaapeGaciyyaiaa
ckhacaGGJbGaaiiDaiaacggacaGGUbGaa8hEaiabgUcaRiaa=neapa
WaaSbaaSqaa8qacaaIXaaapaqabaaakeaapeGaeyOeI0Iaaeyyaiaa
bkhacaqGJbGaae4yaiaab+gacaqG0bGaaeiiaiaa=HhacqGHRaWkca
WFdbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaaaaOWdbiaawUhaaaaa
@55E3@
|
∫sinhx dx=coshx+C
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape
Gaey4kIiVaci4CaiaacMgacaGGUbGaaiiAaGqaciaa=HhacaqGGcGa
aeizaiaa=HhacaWF9aGaci4yaiaac+gacaGGZbGaaiiAaiaa=Hhacq
GHRaWkcaWFdbaaaa@46B9@
|
∫coshx dx=sinhx+C
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape
Gaey4kIiVaci4yaiaac+gacaGGZbGaaiiAaGqaciaa=HhacaqGGcGa
aeizaiaa=HhacaWF9aGaci4CaiaacMgacaGGUbGaaiiAaiaa=Hhacq
GHRaWkcaWFdbaaaa@46B9@
|
∫
1
cosh
2
x
dx=tanhx+C
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape
Gaey4kIi=aaSaaa8aabaWdbiaaigdaa8aabaWdbiGacogacaGGVbGa
ai4CaiaacIgapaWaaWbaaSqabeaapeGaaGOmaaaaieGakiaa=Hhaaa
GaaeiOaiaabsgacaWF4bGaa8xpaiGacshacaGGHbGaaiOBaiaacIga
caWF4bGaey4kaSIaa83qaaaa@48CD@
|
∫
1
sinh
2
x
dx=−cothx+C
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape
Gaey4kIi=aaSaaa8aabaWdbiaaigdaa8aabaWdbiGacohacaGGPbGa
aiOBaiaacIgapaWaaWbaaSqabeaapeGaaGOmaaaaieGakiaa=Hhaaa
GaaeiOaiaabsgacaWF4bGaa8xpaiabgkHiTiGacogacaGGVbGaaiiD
aiaacIgacaWF4bGaey4kaSIaa83qaaaa@49C2@
|
∫
1
x
2
+1
dx=arsinh x+C=ln|
x+
x
2
+1
|+C
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape
Gaey4kIi=aaSaaa8aabaWdbiaaigdaa8aabaWdbmaakaaapaqaaGqa
c8qacaWF4bWdamaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaaIXa
aaleqaaaaakiaabckacaqGKbGaa8hEaiabg2da9iaa=fgacaWFYbGa
a83Caiaa=LgacaWFUbGaa8hAa8aacaaMd8+dbiaa=HhacqGHRaWkca
WFdbGaeyypa0JaciiBaiaac6gadaabdaWdaeaapeGaa8hEaiabgUca
Rmaakaaapaqaa8qacaWF4bWdamaaCaaaleqabaWdbiaaikdaaaGccq
GHRaWkcaaIXaaaleqaaaGccaGLhWUaayjcSdGaey4kaSIaa83qaaaa
@5848@
|
∫
1
x
2
−1
dx=arcosh x+C=ln|
x+
x
2
−1
|+C (für |x|>1 )
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape
Gaey4kIi=aaSaaa8aabaWdbiaaigdaa8aabaWdbmaakaaapaqaaGqa
c8qacaWF4bWdamaaCaaaleqabaWdbiaaikdaaaGccqGHsislcaaIXa
aaleqaaaaakiaabckacaqGKbGaa8hEaiabg2da9iaa=fgacaWFYbGa
a83yaiaa=9gacaWFZbGaa8hAa8aacaaMd8+dbiaa=HhacqGHRaWkca
WFdbGaeyypa0JaciiBaiaac6gadaabdaWdaeaapeGaa8hEaiabgUca
Rmaakaaapaqaa8qacaWF4bWdamaaCaaaleqabaWdbiaaikdaaaGccq
GHsislcaaIXaaaleqaaaGccaGLhWUaayjcSdGaey4kaSIaa83qaiaa
bccacaqGOaGaaeOzaiaabYpacaqGYbGaaeiiaiaacYhacaWG4bGaai
iFaiabg6da+iaaigdacaqGGaGaaeykaaaa@63B6@
|
∫
1
1−
x
2
dx={
artanh x+
C
1
=
1
2
⋅ln(
1+x
1−x
)+
C
1
für|
x
|<1
arcoth x+
C
2
=
1
2
⋅ln(
1+x
x−1
)+
C
2
für|
x
|>1
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape
Gaey4kIi=aaSaaa8aabaWdbiaaigdaa8aabaWdbiaaigdacqGHsisl
ieGacaWF4bWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaaeiOaiaabs
gacaWF4bGaeyypa0Zaaiqaaeaapaqbaeqabiqaaaqaa8qacaWFHbGa
a8NCaiaa=rhacaWFHbGaa8NBaiaa=HgapaGaaG5aV=qacaWF4bGaey
4kaSIaa83qa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqp
daWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaacqGHflY1ciGGSb
GaaiOBamaabmaapaqaa8qadaWcaaWdaeaapeGaaGymaiabgUcaRiaa
=Hhaa8aabaWdbiaaigdacqGHsislcaWF4baaaaGaayjkaiaawMcaai
abgUcaRiaa=neapaWaaSbaaSqaa8qacaaIXaaapaqabaGccaqGGaGa
aeiiaiaabccacaqGGaWdbiaabAgacaqG8dGaaeOCamaaemaapaqaa8
qacaWF4baacaGLhWUaayjcSdGaeyipaWJaaGymaaWdaeaapeGaa8xy
aiaa=jhacaWFJbGaa83Baiaa=rhacaWFObWdaiaayoW7peGaa8hEai
abgUcaRiaa=neapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyyp
a0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaeyyXICTaci
iBaiaac6gadaqadaWdaeaapeWaaSaaa8aabaWdbiaaigdacqGHRaWk
caWF4baapaqaa8qacaWF4bGaeyOeI0IaaGymaaaaaiaawIcacaGLPa
aacqGHRaWkcaWFdbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOGaaeii
aiaabccacaqGGaWdbiaabAgacaqG8dGaaeOCamaaemaapaqaa8qaca
WF4baacaGLhWUaayjcSdGaeyOpa4JaaGymaaaaaiaawUhaaaaa@9121@
|