0

0/15

16 Determinanten

0/15/0

16.1 Einstieg

0/15/0/0

16.1.1 zweireihige Determinanten

0/15/0/0/0

2 × 2 Gleichungssysteme A x = c können wie folgt umgeformt werden:

a11x1 + a12x2 = c1 a22
a21x1 + a22x2 = c2 (-a12)


a 11 a 22 x 1 + a 12 a 22 x 2 = c 1 a 22 a 12 a 21 x 1 a 12 a 22 x 2 = c 2 a 12 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaamaaciaabaqbae qabiqaaaqaaiaadggadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyyX ICTaamyyamaaBaaaleaacaaIYaGaaGOmaaqabaGccqGHflY1caWG4b WaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamyyamaaBaaaleaacaaI XaGaaGOmaaqabaGccqGHflY1caWGHbWaaSbaaSqaaiaaikdacaaIYa aabeaakiabgwSixlaadIhadaWgaaWcbaGaaGOmaaqabaGccqGH9aqp caWGJbWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaamyyamaaBaaale aacaaIYaGaaGOmaaqabaaakeaacqGHsislcaWGHbWaaSbaaSqaaiaa igdacaaIYaaabeaakiabgwSixlaadggadaWgaaWcbaGaaGOmaiaaig daaeqaaOGaeyyXICTaamiEamaaBaaaleaacaaIXaaabeaakiabgkHi TiaadggadaWgaaWcbaGaaGymaiaaikdaaeqaaOGaeyyXICTaamyyam aaBaaaleaacaaIYaGaaGOmaaqabaGccqGHflY1caWG4bWaaSbaaSqa aiaaikdaaeqaaOGaeyypa0JaeyOeI0Iaam4yamaaBaaaleaacaaIYa aabeaakiabgwSixlaadggadaWgaaWcbaGaaGymaiaaikdaaeqaaaaa aOGaayzFaaaaaa@78D8@ +



a11a22 x1 - a12a21 x1 = c1 a22 - c2 a12
(a11a22 - a12a21)x1 = c1 a22 - c2 a12

x1 = c1 a22 - c2 a12 a11a22 - a12a21 ,

analog:

x2 = c2 a11 - c1 a21 a11a22 - a12a21 Beide Nenner sind gleich.
.
Bildet man aus der Koeffizientenmatrix .

A=| a 11 a 12 a 21 a 22 | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaGqacabaaaaaaa aapeGaa8xqaiabg2da98aadaabdaqaauaabeqaciaaaeaapeGaa8xy a8aadaWgaaWcbaWdbiaaigdacaaIXaaapaqabaaakeaapeGaa8xya8 aadaWgaaWcbaWdbiaaigdacaaIYaaapaqabaaakeaapeGaa8xya8aa daWgaaWcbaWdbiaaikdacaaIXaaapaqabaaakeaapeGaa8xya8aada WgaaWcbaWdbiaaikdacaaIYaaapaqabaaaaaGccaGLhWUaayjcSdaa aa@464F@    den Wert D = a11 a22 - a21 a12,
.
hat man die Koeffizientendeterminante der Matrix A bestimmt.

Da die Koeffizientenmatrix eine 2x2-Matrix ist, spricht man von einer

2-reihigen Koeffizientendeterminanten oder Koeffizientendeterminanten 2. Ordnung.

Ist der Wert der Determinanten D = 0, so hat das Gleichungssystem keine

(bzw. bei einem homogenen Gleichungssystem unendlich viele) Lösung(en). . 

Determinanten lassen sich nur für quadratische Matrizen

(d.h. die Matrix hat genau so viele Zeilen wie Spalten) angeben. .

Rechenregel zur Bestimmung einer 2x2-Determinanten: .

D=det A=| a 11 a 12 a 21 a 22 | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaGqacabaaaaaaa aapeGaa8hraiaa=1dacaWFKbGaa8xzaiaa=rhacaWFGaGaa8xqaiab g2da98aadaabdaqaauaabeqaciaaaeaapeGaa8xya8aadaWgaaWcba WdbiaaigdacaaIXaaapaqabaaakeaapeGaa8xya8aadaWgaaWcbaWd biaaigdacaaIYaaapaqabaaakeaapeGaa8xya8aadaWgaaWcbaWdbi aaikdacaaIXaaapaqabaaakeaapeGaa8xya8aadaWgaaWcbaWdbiaa ikdacaaIYaaapaqabaaaaaGccaGLhWUaayjcSdaaaa@4B33@ = |A|=| a ik | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiFaiaadgeacaGG8bGaeyypa0JaaiiFaiaadggadaWgaaWcbaGa amyAaiaadUgaaeqaaOGaaiiFaaaa@3ECD@
.

Die Determinante erhält man, indem man das Produkt der Hauptdiagonal-Elemente bildet und davon das Produkt der Nebendiagonal-Elemente subtrahiert:

det A=det( a 11 a 12 a 21 a 22 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaGqacabaaaaaaa aapeGaa8hzaiaa=vgacaWF0bGaa8hiaiaa=feacqGH9aqpciGGKbGa aiyzaiaacshadaqadaqaa8aafaqabeGacaaabaWdbiaa=fgapaWaaS baaSqaa8qacaaIXaGaaGymaaWdaeqaaaGcbaWdbiaa=fgapaWaaSba aSqaa8qacaaIXaGaaGOmaaWdaeqaaaGcbaWdbiaa=fgapaWaaSbaaS qaa8qacaaIYaGaaGymaaWdaeqaaaGcbaWdbiaa=fgapaWaaSbaaSqa a8qacaaIYaGaaGOmaaWdaeqaaaaaaOWdbiaawIcacaGLPaaaaaa@4AF2@  = a 11 a 22 a 21 a 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0dcbiGaa8xya8aadaWgaaWcbaWdbiaaigdacaaIXaaapaqa baGccqGHflY1peGaa8xya8aadaWgaaWcbaWdbiaaikdacaaIYaaapa qabaGccqGHsislpeGaa8xya8aadaWgaaWcbaWdbiaaikdacaaIXaaa paqabaGccqGHflY1peGaa8xya8aadaWgaaWcbaWdbiaaigdacaaIYa aapaqabaaaaa@47B3@
.
Beispiel 16 - 1:

det A = 5 3 -10 -6 = -30+30 = 0.

Teilen