0

0/17

18 Vektoralgebra

0/17/3

18.4 Skalarprodukt

0/17/3/5 .
Beispiel 18 - 178
Welchen Winkel schließt der Vektor  a =( 2 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaamaaFiaabaGaam yyaaGaay51GaGaeyypa0ZaaeWaaeaafaqabeGabaaabaGaaGOmaaqa aiaaigdaaaaacaGLOaGaayzkaaGaaGjbVdaa@3E21@ mit der x- bzw. der y-Achse ein ? .

Für den zweiten Vektor gilt:  e x =( 1 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaamaaFiaabaGaam yzamaaBaaaleaacaWG4baabeaaaOGaay51GaGaeyypa0ZaaeWaaeaa faqabeGabaaabaGaaGymaaqaaiaaicdaaaaacaGLOaGaayzkaaGaaG jbVdaa@3F56@bzw.   e y =( 0 1 )
 

a e x =( 2 0 )( 1 0 )=2

 a e y =( 2 1 )( 0 1 )=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaamaaFiaabaGaam yyaaGaay51GaGaeyyXIC9aa8HaaeaacaWGLbWaaSbaaSqaaiaadMha aeqaaaGccaGLxdcacqGH9aqpdaqadaqaauaabeqaceaaaeaacaaIYa aabaGaaGymaaaaaiaawIcacaGLPaaacqGHflY1daqadaqaauaabeqa ceaaaeaacaaIWaaabaGaaGymaaaaaiaawIcacaGLPaaacaaMe8Uaey ypa0JaaGymaaaa@4B53@

| a |= 2 2 + 1 2 = 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaacYhadaWhca qaaiaadggaaiaawEniaiaacYhacqGH9aqpdaGcaaqaaiaaikdadaah aaWcbeqaaiaaikdaaaGccqGHRaWkcaaIXaWaaWbaaSqabeaacaaIYa aaaaqabaGccqGH9aqpdaGcaaqaaiaaiwdaaSqabaaaaa@41B6@

| e x |=| e y |=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaacYhadaWhca qaaiaadwgadaWgaaWcbaGaamiEaaqabaaakiaawEniaiaacYhacqGH 9aqpcaGG8bWaa8HaaeaacaWGLbWaaSbaaSqaaiaadMhaaeqaaaGcca GLxdcacaGG8bGaeyypa0JaaGymaaaa@4451@

Damit wird

cosα= a e x | a || e x | = 2 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiGacogacaGGVb Gaai4CaiaaysW7cqaHXoqycqGH9aqpdaWcaaqaamaaFiaabaGaamyy aaGaay51GaGaeyyXIC9aa8HaaeaacaWGLbWaaSbaaSqaaiaadIhaae qaaaGccaGLxdcaaeaacaGG8bWaa8HaaeaacaWGHbaacaGLxdcacaGG 8bGaeyyXICTaaiiFamaaFiaabaGaamyzamaaBaaaleaacaWG4baabe aaaOGaay51GaGaaiiFaaaacqGH9aqpdaWcaaqaaiaaikdaaeaadaGc aaqaaiaaiwdaaSqabaaaaaaa@5512@
oder
α=arccos( a e x | a || e x | )=arccos( 2 5 )0,4627° MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaaysW7cqaHXo qycqGH9aqpciGGHbGaaiOCaiaacogacaGGJbGaai4BaiaacohacaGG OaWaaSaaaeaadaWhcaqaaiaadggaaiaawEniaiabgwSixpaaFiaaba GaamyzamaaBaaaleaacaWG4baabeaaaOGaay51GaaabaGaaiiFamaa FiaabaGaamyyaaGaay51GaGaaiiFaiabgwSixlaacYhadaWhcaqaai aadwgadaWgaaWcbaGaamiEaaqabaaakiaawEniaiaacYhaaaGaaiyk aiabg2da9iGacggacaGGYbGaai4yaiaacogacaGGVbGaai4CaiaacI cadaWcaaqaaiaaikdaaeaadaGcaaqaaiaaiwdaaSqabaaaaOGaaiyk aiabgIKi7kaaicdacaGGSaGaaGinaiaaiAdacqGHijYUcaaIYaGaaG 4naiabgclaWcaa@69D8@

und

cosβ= a e y | a || e y | = 1 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiGacogacaGGVb Gaai4CaiaaysW7cqaHYoGycqGH9aqpdaWcaaqaamaaFiaabaGaamyy aaGaay51GaGaeyyXIC9aa8HaaeaacaWGLbWaaSbaaSqaaiaadMhaae qaaaGccaGLxdcaaeaacaGG8bWaa8HaaeaacaWGHbaacaGLxdcacaGG 8bGaeyyXICTaaiiFamaaFiaabaGaamyzamaaBaaaleaacaWG5baabe aaaOGaay51GaGaaiiFaaaacqGH9aqpdaWcaaqaaiaaigdaaeaadaGc aaqaaiaaiwdaaSqabaaaaaaa@5515@
oder

β=arccos( a e y | a || e y | )=arccos( 1 5 )1,09963° MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaaysW7cqaHYo GycqGH9aqpciGGHbGaaiOCaiaacogacaGGJbGaai4BaiaacohacaGG OaWaaSaaaeaadaWhcaqaaiaadggaaiaawEniaiabgwSixpaaFiaaba GaamyzamaaBaaaleaacaWG5baabeaaaOGaay51GaaabaGaaiiFamaa FiaabaGaamyyaaGaay51GaGaaiiFaiabgwSixlaacYhadaWhcaqaai aadwgadaWgaaWcbaGaamyEaaqabaaakiaawEniaiaacYhaaaGaaiyk aiabg2da9iGacggacaGGYbGaai4yaiaacogacaGGVbGaai4CaiaacI cadaWcaaqaaiaaigdaaeaadaGcaaqaaiaaiwdaaSqabaaaaOGaaiyk aiabgIKi7kaaigdacaGGSaGaaGimaiaaiMdacaaI5aGaeyisISRaaG OnaiaaiodacqGHWcaSaaa@6A9E@

.

Teilen