0

0/18

19 Vektorrechnung im 3-dimensionalen

0/18/1

19.1 Multiplikation eines Vektors mit einem Skalar

0/18/1/5 .
Beispiel 19 - 183
Welcher Punkt liegt in der Mitte der Punkte P1 = (-4; 3; 2) und P2 = (1; 0; 4) ?


PIC .

Abbildung 1: Punktbestimmung

.

Der Punkt#P1Q ist parallel zum Vektor #
P1P2  , jedoch nur von halber Länge: P 1 Q = 1 2 P 1 P 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaamaaFiaabaGaam iuamaaBaaaleaacaaIXaaabeaakiaadgfaaiaawEniaiabg2da9maa laaabaGaaGymaaqaaiaaikdaaaWaa8HaaeaacaWGqbWaaSbaaSqaai aaigdaaeqaaOGaamiuamaaBaaaleaacaaIYaaabeaaaOGaay51Gaaa aa@4205@

Der Ortsvektor zum Punkt  Q kann konstruiert werden als: .

r(Q) = r( P 1 ) + P 1 Q = r( P 1 ) + 1 2 P 1 P 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaamaaFiaabaGaam OCaiaacIcacaWGrbGaaiykaaGaay51GaGaeyypa0Zaa8HaaeaacaWG YbGaaiikaiaadcfadaWgaaWcbaGaaGymaaqabaGccaGGPaaacaGLxd cacqGHRaWkdaWhcaqaaiaadcfadaWgaaWcbaGaaGymaaqabaGccaWG rbaacaGLxdcacqGH9aqpdaWhcaqaaiaadkhacaGGOaGaamiuamaaBa aaleaacaaIXaaabeaakiaacMcaaiaawEniaiabgUcaRmaalaaabaGa aGymaaqaaiaaikdaaaWaa8HaaeaacaWGqbWaaSbaaSqaaiaaigdaae qaaOGaamiuamaaBaaaleaacaaIYaaabeaaaOGaay51Gaaaaa@553D@

r( P 1 ) =( 4 3 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaamaaFiaabaGaam OCaiaacIcacaWGqbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaaGaay51 GaGaeyypa0ZaaeWaaeaafaqabeWabaaabaGaeyOeI0IaaGinaaqaai aaiodaaeaacaaIYaaaaaGaayjkaiaawMcaaaaa@4173@ ,          P 1 P 2 =( 5 3 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaamaaFiaabaGaam iuamaaBaaaleaacaaIXaaabeaakiaadcfadaWgaaWcbaGaaGOmaaqa baaakiaawEniaiabg2da9maabmaabaqbaeqabmqaaaqaaiaaiwdaae aacqGHsislcaaIZaaabaGaaGOmaaaaaiaawIcacaGLPaaaaaa@40EB@
Damit erhält man .

r(Q) = r( P 1 ) + P 1 Q = r( P 1 ) + 1 2 P 1 P 2 =( 4 3 2 )+( 2,5 1,5 1 )=( 1,5 1,5 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaamaaFiaabaacbi aeaaaaaaaaa8qacaWFYbGaaiikaiaa=ffacaGGPaaapaGaay51GaWd biabg2da98aadaWhcaqaa8qacaWFYbGaaiikaiaa=bfapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaaiykaaWdaiaawEnia8qacqGHRaWk paWaa8HaaeaapeGaa8hua8aadaWgaaWcbaWdbiaaigdaa8aabeaak8 qacaWFrbaapaGaay51GaWdbiabg2da98aadaWhcaqaa8qacaWFYbGa aiikaiaa=bfapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiykaa WdaiaawEnia8qacqGHRaWkdaWcaaWdaeaapeGaaGymaaWdaeaapeGa aGOmaaaapaWaa8HaaeaapeGaa8hua8aadaWgaaWcbaWdbiaaigdaa8 aabeaak8qacaWFqbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGccaGL xdcacqGH9aqpdaqadaqaauaabeqadeaaaeaacqGHsislcaaI0aaaba GaaG4maaqaaiaaikdaaaaacaGLOaGaayzkaaGaey4kaSYaaeWaaeaa faqabeWabaaabaGaaGOmaiaacYcacaaI1aaabaGaeyOeI0IaaGymai aacYcacaaI1aaabaGaaGymaaaaaiaawIcacaGLPaaacqGH9aqpdaqa daqaauaabeqadeaaaeaacqGHsislcaaIXaGaaiilaiaaiwdaaeaaca aIXaGaaiilaiaaiwdaaeaacaaIZaaaaaGaayjkaiaawMcaaaaa@6E71@
.

Teilen