0

0/19

20 Anwendungen

0/19/2

20.2 Abstände/Schnittpunkte von Geraden

0/19/2/4 .
Beispiel 20 - 204
gegeben:

g 1 : r ( λ 1 )=( 1 1 4 )+ λ 1 ( 1 1 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaadEgadaWgaa WcbaGaaGymaaqabaGccaGG6aGaaGjbVpaaFiaabaGaamOCaaGaay51 GaGaaiikaiabeU7aSnaaBaaaleaacaaIXaaabeaakiaacMcacqGH9a qpdaqadaqaauaabeqadeaaaeaacaaIXaaabaGaaGymaaqaaiaaisda aaaacaGLOaGaayzkaaGaey4kaSIaeq4UdW2aaSbaaSqaaiaaigdaae qaaOWaaeWaaeaafaqabeWabaaabaGaaGymaaqaaiaaigdaaeaacaaI XaaaaaGaayjkaiaawMcaaaaa@4CDA@

g 2 : r ( λ 2 )=( 4 0 3 )+ λ 2 ( 3 3 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaadEgadaWgaa WcbaGaaGOmaaqabaGccaGG6aGaaGjbVpaaFiaabaGaamOCaaGaay51 GaGaaiikaiabeU7aSnaaBaaaleaacaaIYaaabeaakiaacMcacqGH9a qpdaqadaqaauaabeqadeaaaeaacaaI0aaabaGaaGimaaqaaiaaioda aaaacaGLOaGaayzkaaGaey4kaSIaeq4UdW2aaSbaaSqaaiaaikdaae qaaOWaaeWaaeaafaqabeWabaaabaGaaG4maaqaaiaaiodaaeaacaaI ZaaaaaGaayjkaiaawMcaaaaa@4CE4@


Wie groß ist der Abstand der Geraden ? .

.

Abstand:
 . ( r 2 r 1 )× a 1 =( 41 01 34 )×( 1 1 1 )=| x y z 3 1 1 1 1 1 |=( 1+1 13 3+1 )=( 0 4 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaacIcadaWhca qaaiaadkhadaWgaaWcbaGaaGOmaaqabaaakiaawEniaiabgkHiTmaa FiaabaGaamOCamaaBaaaleaacaaIXaaabeaaaOGaay51GaGaaiykai abgEna0oaaFiaabaGaamyyamaaBaaaleaacaaIXaaabeaaaOGaay51 GaGaeyypa0ZaaeWaaeaafaqabeWabaaabaGaaGinaiabgkHiTiaaig daaeaacaaIWaGaeyOeI0IaaGymaaqaaiaaiodacqGHsislcaaI0aaa aaGaayjkaiaawMcaaiabgEna0oaabmaabaqbaeqabmqaaaqaaiaaig daaeaacaaIXaaabaGaaGymaaaaaiaawIcacaGLPaaacqGH9aqpdaab daqaauaabeqadmaaaeaacaWG4baabaGaamyEaaqaaiaadQhaaeaaca aIZaaabaGaeyOeI0IaaGymaaqaaiabgkHiTiaaigdaaeaacaaIXaaa baGaaGymaaqaaiaaigdaaaaacaGLhWUaayjcSdGaeyypa0ZaaeWaae aafaqabeWabaaabaGaeyOeI0IaaGymaiabgUcaRiaaigdaaeaacqGH sislcaaIXaGaeyOeI0IaaG4maaqaaiaaiodacqGHRaWkcaaIXaaaaa GaayjkaiaawMcaaiabg2da9maabmaabaqbaeqabmqaaaqaaiaaicda aeaacqGHsislcaaI0aaabaGaaGinaaaaaiaawIcacaGLPaaaaaa@737D@

.
d = 4+16 3 2, 58 .

.

Teilen