0
0/19
0/19/2
0/19/2/6
Vorbemerkung: 0/19/2/6/5 . Beispiel 20 - 205 Gegeben seien die Geraden:
g 1 : x 1 → =( 1 2 0 )+ λ 1 ( 1 1 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4zamaaBaaaleaacaaIXaaabeaakiaacQdacaaMc8+aa8Haaeaa caWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLxdcacqGH9aqpdaqada qaauaabeqadeaaaeaacaaIXaaabaGaaGOmaaqaaiaaicdaaaaacaGL OaGaayzkaaGaey4kaSIaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOWaae WaaeaafaqabeWabaaabaGaaGymaaqaaiaaigdaaeaacaaIXaaaaaGa ayjkaiaawMcaaaaa@49EE@ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4zaiaaigdacaGG6aGaaGPaVpaaFiaabaGaamiEamaaBaaaleaa caaIXaaabeaaaOGaay51GaGaeyypa0ZaaeWaaeaafaqabeWabaaaba GaaGymaaqaaiaaikdaaeaacaaIWaaaaaGaayjkaiaawMcaaiabgUca RiabeU7aSnaaBaaaleaacaaIXaaabeaakmaabmaabaqbaeqabmqaaa qaaiaaigdaaeaacaaIXaaabaGaaGymaaaaaiaawIcacaGLPaaaaaa@49B8@ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4zaiaaigdacaGG6aGaaGPaVpaaFiaabaGaamiEamaaBaaaleaa caaIXaaabeaaaOGaay51GaGaeyypa0ZaaeWaaeaafaqabeWabaaaba GaaGymaaqaaiaaikdaaeaacaaIWaaaaaGaayjkaiaawMcaaiabgUca RiabeU7aSnaaBaaaleaacaaIXaaabeaakmaabmaabaqbaeqabmqaaa qaaiaaigdaaeaacaaIXaaabaGaaGymaaaaaiaawIcacaGLPaaaaaa@49B7@
Prüfen auf Kollinearität: . . a 1 → × a 2 → =| x y z 2 1 1 2 0 1 |=( 1−0 2−1 0−2 )=( 1 1 −2 )≠ 0 → MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaamaaFiaabaacbi aeaaaaaaaaa8qacaWFHbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGc caGLxdcapeGaey41aq7damaaFiaabaWdbiaa=fgapaWaaSbaaSqaa8 qacaaIYaaapaqabaaakiaawEnia8qacqGH9aqpdaabdaWdaeaafaqa beWadaaabaWdbiaa=Hhaa8aabaWdbiaa=Lhaa8aabaWdbiaa=Phaa8 aabaGaaGOmaaqaa8qacaaIXaaapaqaa8qacaaIXaaapaqaaiaaikda aeaacaaIWaaabaWdbiaaigdaaaaacaGLhWUaayjcSdGaeyypa0Zaae Waa8aabaqbaeqabmqaaaqaa8qacaaIXaGaeyOeI0IaaGimaaWdaeaa peGaaGOmaiabgkHiTiaaigdaa8aabaWdbiaaicdacqGHsislcaaIYa aaaaGaayjkaiaawMcaaiabg2da9maabmaapaqaauaabeqadeaaaeaa peGaaGymaaWdaeaapeGaaGymaaWdaeaapeGaeyOeI0IaaGOmaaaaai aawIcacaGLPaaacqGHGjsUdaWhcaqaaiaaicdaaiaawEniaaaa@6090@
| [ a 1 → a 2 → ( r 1 → − r 2 → ) ] |=‖ 1 −2 2 1 1 1 2 0 1 ‖=| 2−4+0−4−0+2 |=4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaamaaemaabaWaam WaaeaadaWhcaqaaGqacabaaaaaaaaapeGaa8xya8aadaWgaaWcbaWd biaaigdaa8aabeaaaOGaay51GaWaa8HaaeaapeGaa8xya8aadaWgaa WcbaWdbiaaikdaa8aabeaaaOGaay51GaWaaeWaaeaadaWhcaqaaiaa dkhadaWgaaWcbaWdbiaaigdaa8aabeaaaOGaay51GaGaeyOeI0Yaa8 HaaeaacaWGYbWaaSbaaSqaa8qacaaIYaaapaqabaaakiaawEniaaGa ayjkaiaawMcaaaGaay5waiaaw2faaaGaay5bSlaawIa7aiabg2da9m aafmaabaqbaeqabmWaaaqaaiaaigdaaeaacqGHsislcaaIYaaabaGa aGOmaaqaaiaaigdaaeaacaaIXaaabaGaaGymaaqaaiaaikdaaeaaca aIWaaabaGaaGymaaaaaiaawMa7caGLkWoacqGH9aqpdaabdaqaaiaa ikdacqGHsislcaaI0aGaey4kaSIaaGimaiabgkHiTiaaisdacqGHsi slcaaIWaGaey4kaSIaaGOmaaGaay5bSlaawIa7aiabg2da9iaaisda aaa@6733@ . d = 4 6. .
.