0

0/19

20 Anwendungen

0/19/3

20.3 Vektorielle Darstellung der Ebene

0/19/3/6

20.3.6 Abstand einer (parallelen) Geraden von einer Ebene

0/19/3/6/1 .
Beispiel 20 - 218
Abstand Gerade-Ebene .
Gegeben sei eine Gerade mit dem Ortsvektor .

r 1 =( 0 1 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaamaaFiaabaGaam OCamaaBaaaleaacaaIXaaabeaaaOGaay51GaGaeyypa0ZaaeWaaeaa faqabeWabaaabaGaaGimaaqaaiaaigdaaeaacqGHsislcaaIXaaaaa GaayjkaiaawMcaaaaa@3F3E@  und dem Richtungsvektor  a =( 1 4 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaamaaFiaabaGaam yyaaGaay51GaGaeyypa0ZaaeWaaeaafaqabeWabaaabaGaeyOeI0Ia aGymaaqaaiaaisdaaeaacaaIYaaaaaGaayjkaiaawMcaaaaa@3E41@   .
sowie eine Ebene dem Ortsvektor   P 0 =( 1 5 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaamaaFiaabaGaam iuamaaBaaaleaacaaIWaaabeaaaOGaay51GaGaeyypa0ZaaeWaaeaa faqabeWabaaabaGaaGymaaqaaiaaiwdaaeaacaaIYaaaaaGaayjkai aawMcaaaaa@3E34@    und dem Normalenvektor  n =( 2 1 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaamaaFiaabaGaam OBaaGaay51GaGaeyypa0ZaaeWaaeaafaqabeWabaaabaGaaGOmaaqa aiaaigdaaeaacaaIZaaaaaGaayjkaiaawMcaaaaa@3D60@ . .
.
Wie liegen die Gerade und die Ebene zueinander ? .

na = 2 1 3 -1 -4 2 = -2-4+6 = 0. .
.
Ebene und Gerade verlaufen also parallel. .
.
d = |n (r1 -P0)| |n| . .
.
n(r1-P0) = 2 1 3 0 - 1 1 - 5 1 - 2 = 2 1 3 -1 -4 -1 = -2-4-9 = -15. .
.
|#n | = 22 + 12 + 32 = 14.

.
d = -15 14. .

.

Teilen