0

0/19

20 Anwendungen

0/19/3

20.3 Vektorielle Darstellung der Ebene

0/19/3/8 .
Beispiel 20 - 221
Schnittpunkt Gerade - Ebene bei Darstellung in Normalform. .
Gegeben sei eine Ebene mit dem Ortsvektor .

P 0 =( 3 4 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaamaaFiaabaGaam iuamaaBaaaleaacaaIWaaabeaaaOGaay51GaGaeyypa0ZaaeWaaeaa faqabeWabaaabaGaaG4maaqaaiaaisdaaeaacaaIXaaaaaGaayjkai aawMcaaaaa@3E34@  und dem Normalenvektor      n =( 2 1 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaamaaFiaabaGaam OBaaGaay51GaGaeyypa0ZaaeWaaeaafaqabeWabaaabaGaaGOmaaqa aiabgkHiTiaaigdaaeaacaaIXaaaaaGaayjkaiaawMcaaaaa@3E4B@ .

sowie eine Gerade mit dem Ortsvektor    P1 =( 2 1 5 ) und dem  Richtungsvektor     a =( 3 4 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaamaaFiaabaGaam yyaaGaay51GaGaeyypa0ZaaeWaaeaafaqabeWabaaabaGaaG4maaqa aiabgkHiTiaaisdaaeaacaaIWaaaaaGaayjkaiaawMcaaaaa@3E41@ . .
Bestimmen Sie Schnittpunkt und Schnittwinkel. .

rs = r1+n (r0 -r1) n a a = 2 1 5 + 2 -1 1 1 3 -4 2 -1 1 3 -4 0 3 -4 0 = 2 1 5 +2-3-4 6+4 3 -4 0 = 2 1 5 -1, 5 -2 0 = 0, 5 3 5 .

Schnittwinkel:   φ=arcsin n a [ n ][ a ] =arcsin 6+4+0 6 25 0,3π55° MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiabeA8aQjabg2 da9iGacggacaGGYbGaai4yaiaacohacaGGPbGaaiOBaiaaykW7daWc aaqaamaaFiaabaGaamOBaaGaay51GaGaeyyXIC9aa8HaaeaacaWGHb aacaGLxdcaaeaadaWadaqaamaaFiaabaGaamOBaaGaay51GaaacaGL BbGaayzxaaGaeyyXIC9aamWaaeaadaWhcaqaaiaadggaaiaawEniaa Gaay5waiaaw2faaaaacqGH9aqpciGGHbGaaiOCaiaacogacaGGZbGa aiyAaiaac6gacaaMc8+aaSaaaeaacaaI2aGaey4kaSIaaGinaiabgU caRiaaicdaaeaadaGcaaqaaiaaiAdaaSqabaGccqGHflY1daGcaaqa aiaaikdacaaI1aaaleqaaaaakiaaykW7cqGHijYUcaaIWaGaaiilai aaiodacqGHflY1cqaHapaCcqGHijYUcaaI1aGaaGynaiabgclaWcaa @7264@ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiabeA8aQjabg2 da9iGacggacaGGYbGaai4yaiaacohacaGGPbGaaiOBaiaaykW7daWc aaqaamaaFiaabaGaamOBaaGaay51GaGaeyyXIC9aa8HaaeaacaWGHb aacaGLxdcaaeaadaWadaqaamaaFiaabaGaamOBaaGaay51GaaacaGL BbGaayzxaaGaeyyXIC9aamWaaeaadaWhcaqaaiaadggaaiaawEniaa Gaay5waiaaw2faaaaacqGH9aqpciGGHbGaaiOCaiaacogacaGGZbGa aiyAaiaac6gacaaMc8+aaSaaaeaacaaI2aGaey4kaSIaaGinaiabgU caRiaaicdaaeaadaGcaaqaaiaaiAdaaSqabaGccqGHflY1daGcaaqa aiaaikdacaaI1aaaleqaaaaakiaaykW7cqGHijYUcaaIWaGaaiilai aaiodacqGHflY1cqaHapaCcqGHijYUcaaI1aGaaGynaiabgclaWcaa @7263@

.
Teilen