Sei Ω= { 1,…,6 } 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHPoWvcqGH9aqpdaGadaqaaiaaigdacaGGSaGaeyOjGWRaaiil aiaaiAdaaiaawUhacaGL9baadaahaaWcbeqaaiaaikdaaaaaaa@402E@ mit P als Gleichverteilung der Wahrscheinlichkeitsraum für den Wurf zweier Würfel. Sei X( i,j )=max( i,j ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGybWaaeWaaeaacaWGPbGaaiilaiaadQgaaiaawIcacaGLPaaa cqGH9aqpciGGTbGaaiyyaiaacIhadaqadaqaaiaadMgacaGGSaGaam OAaaGaayjkaiaawMcaaaaa@42FA@ die maximale Augenzahl. Dann gilt mit der bereits bestimmten Verteilung von X E[ X ]= ∑ x∈X( Ω ) x⋅p( x )=1⋅ 1 36 +2⋅ 3 36 +3⋅ 5 36 +⋯+6⋅ 11 36 = 161 36 =4.47. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGfbWaamWaaeaacaWGybaacaGLBbGaayzxaaGaeyypa0Zaaabu aeaacaWG4bGaeyyXICTaamiCamaabmaabaGaamiEaaGaayjkaiaawM caaiabg2da9iaaigdacqGHflY1daWcaaqaaiaaigdaaeaacaaIZaGa aGOnaaaacqGHRaWkcaaIYaGaeyyXIC9aaSaaaeaacaaIZaaabaGaaG 4maiaaiAdaaaGaey4kaSIaaG4maiabgwSixpaalaaabaGaaGynaaqa aiaaiodacaaI2aaaaiabgUcaRiabl+UimjabgUcaRiaaiAdacqGHfl Y1daWcaaqaaiaaigdacaaIXaaabaGaaG4maiaaiAdaaaGaeyypa0Za aSaaaeaacaaIXaGaaGOnaiaaigdaaeaacaaIZaGaaGOnaaaacqGH9a qpcaaI0aGaaiOlaiaaisdacaaI3aGaaeOlaaWcbaGaamiEaiabgIGi olaadIfadaqadaqaaiabfM6axbGaayjkaiaawMcaaaqab0GaeyyeIu oaaaa@6FF7@